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Abstract

A new finite volume-based numerical algorithm for predicting incompressible and compressible multi-phase flow

phenomena is presented. The technique is equally applicable in the subsonic, transonic, and supersonic regimes. The

method is formulated on a non-orthogonal coordinate system in collocated primitive variables. Pressure is selected as a

dependent variable in preference to density because changes in pressure are significant at all speeds as opposed to

variations in density, which become very small at low Mach numbers. The pressure equation is derived from overall

mass conservation. The performance of the new method is assessed by solving the following two-dimensional two-phase

flow problems: (i) incompressible turbulent bubbly flow in a pipe, (ii) incompressible turbulent air–particle flow in a

pipe, (iii) compressible dilute gas–solid flow over a flat plate, and (iv) compressible dusty flow in a converging diverging

nozzle. Predictions are shown to be in excellent agreement with published numerical and/or experimental data.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The last two decades have witnessed a substantial transformation in the computational fluid dynamics

(CFD) industry; from a research means confined to research laboratories, CFD has emerged as an every

day engineering tool for a wide range of industries (Aeronautics, Automobile, chemical Processing, etc.).
This increasing dependence on CFD is due to a multitude of factors that have rendered practical the

simulation of large complex industrial-type problems. Some of these factors are directly related to the

maturity of several numerical aspects at the core of CFD. These include: multi-grid acceleration techniques

[1–4] with enhanced equation solvers [5,6] that have decreased the computational cost of tackling large

problems, better discretization techniques with bounded high resolution schemes [13–18] yielding more

accurate results, unstructured grid methods [7–12] that simplify the description of complex geometry, as
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Nomenclature

AðkÞ
P ; . . . coefficients in the discretized equation for /ðkÞ

BðkÞ
P source term in the discretized equation for /ðkÞ

BðkÞ body force per unit volume of fluid/phase k
CðkÞ

q coefficient equals to 1=RðkÞT ðkÞ two-phase.

D
ðkÞ
P ½/ðkÞ� matrix operator defined in Eq. (14)

HP½/ðkÞ� the H operator

HP½uðkÞ� the vector form of the HP operator

IðkÞ inter-phase momentum transfer

J
ðkÞD
f diffusion flux of /ðkÞ across cell face �f �

J
ðkÞC
f convection flux of /ðkÞ across cell face �f �
_MM ðkÞ mass source per unit volume

P pressure

PrðkÞ; PrðkÞt laminar and turbulent Prandtl number for fluid/phase k
_qqðkÞ heat generated per unit volume of fluid/phase k
QðkÞ general source term of fluid/phase k
rðkÞ volume fraction of fluid/phase k
Sf surface vector
t time

T ðkÞ temperature of fluid/phase k
U ðkÞ

f interface flux velocity ðvðkÞf � SfÞ of fluid/phase k
uðkÞ velocity vector of fluid/phase k
uðkÞ; vðkÞ; . . . velocity components of fluid/phase k
x; y Cartesian coordinates

ka; bk the maximum of a and b

Greeks

qðkÞ density of fluid/phase k
CðkÞ diffusion coefficient of fluid/phase k
UðkÞ dissipation term in energy equation of fluid/phase k
/ðkÞ general scalar quantity associated with fluid/phase k
DP½/ðkÞ� the D operator

lðkÞ; lðkÞ
t laminar and turbulent viscosity of fluid/phase k

X cell volume

dt time step

Subscripts

f refers to control volume face �f�
P refers to the P grid point

Superscripts

C refers to convection contribution

D refers to diffusion contribution

ðkÞ refers to fluid/phase k
ðkÞ* refers to updated value at the current iteration

ðkÞ0 refers to values of fluid/phase k from the previous iteration

ðkÞ0 refers to correction field of phase/fluid k
m refers to fluid/phase m
old refers to values from the previous time step
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well as improved pressure–velocity (and density) coupling algorithms for fluid flow at all speeds [19–27]

resulting in better convergence behavior. The exponential increase in microprocessors power and the as-

sociated decrease in unit cost have also benefited the CFD industry. Multiprocessor systems with large

memory, set up at a fraction of the cost of the super computers of a decade ago, have pushed the limits on

the size of the problems that can be tackled.

Challenges still abound in a number of fields: increasing the robustness of the employed numerical

schemes, improving the accuracy of the used models, extending the many advances in the simulation of

single fluid flows [28–34] to multi-phase flows [35], are just a few areas of current research interest. For
multi-phase flow simulation, the basic difficulty [36] stems from the increased algorithmic complexity that

need to be addressed when dealing with multiple sets of continuity and momentum equations that are inter-

coupled (interchange momentum by inter-phase mass and momentum transfer, etc.) both spatially and

across fluids. That is, on top of the velocity–pressure coupling for each phasic continuity–momentum set,

there exist a number of inter-fluid coupling relations. This is further complicated in the simulation of su-

personic multi-phase flows, or in general when developing an all speed flow multi-phase algorithm. Despite

these complexities, successful segregated incompressible pressure-based solution algorithms have been

devised, such as the IPSA variants developed by the Spalding Group at Imperial College [37–39] and the set
of algorithms developed by the Los Alamos Scientific Laboratory (LASL) group [40–42]. For compressible

flow simulations at high Mach number, special treatment is needed to resolve the density–velocity and

density–pressure couplings. Algorithms for all-speed multi-phase flow simulation were recently presented

and new ones derived in [36] following a Pressure-based approach but none was implemented or tested.

Actually to the authors� knowledge, no work dealing with a pressure-based method capable of predicting

multi-phase flow phenomena at all speeds has been reported in the literature. It is the objective of this

work to test a newly developed multi-phase pressure-based solution procedure that is equally valid at all

Reynolds and Mach number values.
In what follows the governing equations for compressible multi-phase flows are first presented and their

discretization outlined so as to lay the ground for the derivation of the pressure correction equation, which

is obtained from overall mass conservation. This class of algorithms is denoted as the mass conservation

based algorithms (MCBA) [36]. Then, a brief description of the solution procedure is given and the ca-

pability of the newly developed algorithm to predict multi-phase flow at all speeds demonstrated by pre-

senting solutions to four test problems spanning the entire subsonic to supersonic spectrum over a wide

range of physical conditions (from turbulent incompressible bubbly flows to supersonic air–particle flows).

The problems solved are: (i) turbulent incompressible bubbly flow in a pipe, (ii) turbulent incompressible
air–particle flow in a pipe, (iii) compressible dilute air–particle flow over a flat plate, and (iv) inviscid

transonic dusty flow in a converging-diverging nozzle. Furthermore, the accuracy of the method is dem-

onstrated by comparing results against published experimental and/or numerical data.
2. The governing equations

In multi-phase flow the various fluids/phases coexist with different concentrations at different locations in
the flow domain and move with unequal velocities. Thus, the equations governing multi-phase flows are the

conservation laws of mass, momentum, and energy for each individual fluid. For turbulent multi-phase

flow situations, an additional set of equations may be needed depending on the turbulence model used.

These equations should be supplemented by a set of auxiliary relations.

The various conservation equations are:

o rðkÞqðkÞ� �
ot

þr � rðkÞqðkÞuðkÞ
� �

¼ rðkÞ _MM ðkÞ; ð1Þ
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o rðkÞqðkÞuðkÞ
� �

ot
þr � rðkÞqðkÞuðkÞuðkÞ

� �
¼ r � rðkÞ lðkÞ��

þ lðkÞ
t

�
ruðkÞ

i
þ rðkÞ

�
�rP þ BðkÞ�þ I

ðkÞ
M ; ð2Þ
o rðkÞqðkÞT ðkÞ� �
ot

þr� rðkÞqðkÞuðkÞT ðkÞ� �
¼r� rðkÞ

lðkÞ

PrðkÞ

 "
þ lðkÞ

t

PrðkÞt

!
rT ðkÞ

#
þ rðkÞ

cðkÞP

bðkÞT ðkÞ oP
ot

��
þr� PuðkÞ

� �
� Pr� uðkÞ

� ��
þUðkÞ þ _qqðkÞ

�
þ I ðkÞE

cðkÞP

;

ð3Þ
where the meanings of the various terms are as given in the nomenclature.

In addition to the above mass, momentum, and energy conservation equations (1)–(3), a geometric

conservation equation is needed for multi-phase flow. Physically, this equation is a statement indicating

that the sum of volumes occupied by the different fluids, rðkÞ, within a cell is equal to the volume of the cell

containing the fluids, and is given asX
k

rðkÞ ¼ 1: ð4Þ

Because a static mesh is used, Eq. (4) does not include a transient term.

The effect of turbulence on interfacial mass, momentum, and energy transfer is difficult to model and is

still an active area of research. Similar to single-fluid flow, researchers have advertised several flow-de-

pendent models to describe turbulence. These models vary in complexity from simple algebraic [43] models

to state-of-the-art Reynolds-stress [44] models. In this work, the widely used two-equation k–e turbulence
model [45] with multi-phase specific modifications is adopted. The phasic conservation equations governing

the turbulence kinetic energy (k) and turbulence dissipation rate (e) for the kth fluid are given by

o rðkÞqðkÞkðkÞ
� �

ot
þr � rðkÞqðkÞuðkÞkðkÞ

� �
¼ r � rðkÞ

lðkÞ
t

rðkÞ
k

rkðkÞ
 !

þ rðkÞqðkÞ GðkÞ�
� eðkÞ

�
þ I ðkÞk ; ð5Þ
o rðkÞqðkÞeðkÞ
� �

ot
þr � rðkÞqðkÞuðkÞeðkÞ

� �
¼ r � rðkÞ

lðkÞ
t

rðkÞ
e

reðkÞ
 !

þ rðkÞqðkÞ e
ðkÞ

kðkÞ
c1eGðkÞ�

� c2eeðkÞ
�
þ I ðkÞe ; ð6Þ

where I ðkÞk and I ðkÞe represent the interfacial turbulence terms. The turbulent viscosity is calculated as

lðkÞ
t ¼ Clq

kð Þ kðkÞ
� 	2
eðkÞ

: ð7Þ

For two-phase flows, several extensions of the k–e model that are based on calculating the turbulent vis-

cosity by solving the k and e equations for the carrier or continuous phase only have been proposed in the

literature [46–51]. In a recent paper, Cokljat and Ivanov [45] presented a phase coupled k–e turbulence

model, intended for the cases where a non-dilute secondary phase is present, in which the k–e transport

equations for all phases are solved. Since the method is still not well developed, the first approach in which

only the k and e equations for the carrier phase are solved is adopted in this work.

If a typical representative variable associated with phase (k) is denoted by /ðkÞ, the above conservation

equations can be presented via the following general phasic equation:

o rðkÞqðkÞ/ðkÞ

 �

ot
þr � rðkÞqðkÞuðkÞ/ðkÞ


 �
¼ r � rðkÞCðkÞr/ðkÞ


 �
þ rðkÞQðkÞ; ð8Þ

where the expression for CðkÞ and QðkÞ can be deduced from the parent equations.
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The presented set of differential equations has to be solved in conjunction with constraints on certain

variables represented by algebraic relations. These auxiliary relations include the equations of state and the

interfacial mass, momentum, energy, and turbulence energy transfers.

For a compressible multi-phase flow, auxiliary equations of state relating density to pressure and

temperature are needed. For the kth phase, such an equation can be written as

qðkÞ ¼ qðkÞ P ; T ðkÞ� �
: ð9Þ

Several models have been developed for computing the interfacial mass, momentum, energy, and turbu-
lence energy transfers terms. Details regarding the closures used here are given in the results section.

In order to present a complete mathematical problem, thermodynamic relations may be needed and

initial and boundary conditions should supplement the above equations.
3. Discretization procedure

Integrating the general conservation Eq. (8) over a finite volume (Fig. 1) yields

Z
X

Z o rðkÞqðkÞ/ðkÞ

 �

ot
dXþ

Z
X

Z
r � rðkÞqðkÞuðkÞ/ðkÞ

 �

dX

¼
Z
X

Z
r � rðkÞCðkÞr/ðkÞ

 �

dXþ
Z
X

Z
rðkÞQðkÞ dX; ð10Þ

where X is the volume of the control cell (Fig. 1). Using the divergence theorem to transform the volume

integral into a surface integral and then replacing the surface integral by a summation of the fluxes over the

sides of the control volume, Eq. (10) is transformed to

o rðkÞqðkÞ/ðkÞX

 �

ot
þ

X
NB¼e;w;n;s;t;b

J
ðkÞD
NB



þ J

ðkÞC
NB

�
¼ rðkÞQðkÞX; ð11Þ
Fig. 1. Control volume.
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where J
ðkÞD
NB and J

ðkÞC
NB are the diffusive and convective fluxes, respectively. The discretization of the diffusion

term is second-order accurate and follows the derivations presented in [35]. For the convective terms and

for the calculation of interface densities, the third-order SMART [13] scheme is employed and implemented

within the context of the normalized variables and space formulation (NVSF) methodology [15]. Moreover,

the integral value of the source term over the control volume is obtained by assuming the estimate of the

source at the control volume center to represent the mean value over the whole control volume. Fur-

thermore, the additional terms appearing in the momentum and energy equations, not featured in Eq. (10),

are treated explicitly and their discretization is analogous to that of the ordinary diffusion flux.
Substituting the face values by the functional relationships relating them to the neighboring node values,

Eq. (11) is transformed after some algebraic manipulations into the following discretized equation:

AðkÞ
P /ðkÞ

p ¼
X
NB

AðkÞ
NB/

ðkÞ
NB þ BðkÞ

P ; ð12Þ

where the coefficients AðkÞ
P and AðkÞ

NB depend on the selected scheme and BðkÞ
P is the source term of the dis-

cretized equation. In compact form, the above equation can be written as

/ðkÞ
p ¼ HP /ðkÞ

h i
¼
P

NB A
ðkÞ
NB/

ðkÞ
NB þ BðkÞ

P

AðkÞ
P

: ð13Þ

The discretization procedure for the momentum equation yields an algebraic equation of the form

u
ðkÞ
P ¼ HP uðkÞ

� 	
� rðkÞDðkÞ

P rP Pð Þ; where D
ðkÞ
P ¼

X
AuðkÞ
P

0

0 X
AvðkÞ
P

2
4

3
5: ð14Þ

On the other hand, the phasic mass-conservation equation (Eq. (1)) can be either viewed as a phasic volume

fraction equation

rðkÞp ¼ HP rðkÞ
� 	

: ð15Þ

or as a phasic continuity equation to be used in deriving the pressure correction equation

rðkÞp qðkÞ
p


 �
� rðkÞp qðkÞ

p


 �old
dt

Xþ DP rðkÞqðkÞuðkÞ � S
� 	

¼ rðkÞ _MM ðkÞ; ð16Þ

where the D operator represents the following operation:

DP H½ � ¼
X

f¼NBðPÞ
Hf : ð17Þ
4. Solution procedure

The number of equations describing an n-fluid flow situation are: n-phasic momentum equations, n
phasic volume fraction (or mass conservation) equations, a geometric conservation equation, and for the

case of a compressible flow an additional n auxiliary pressure–density relations. Moreover, the variables

involved are the n-phasic velocity vectors, the n-phasic volume fractions, the pressure field, and for a

compressible flow an additional n unknown phasic density fields. In the current work, the n momentum

equations are used to calculate the n velocity fields, n� 1 volume fraction (mass conservation) equations are
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used to calculate n� 1 volume fraction fields, and the last volume fraction field calculated using the geo-

metric conservation equation

rðnÞ ¼ 1�
X
k 6¼n

rðkÞ: ð18Þ

The remaining volume fraction equation can be used to calculate the pressure field that is shared by all

phases. However, instead of using this last volume fraction equation, in the class of mass conservation

based algorithms (MCBA) the global conservation equation is employed, i.e., the sum of the individual

mass conservation equations, to derive a pressure correction equation as outlined next.

4.1. The pressure correction equation

To derive the pressure correction equation, the mass conservation equations of the various phases are

added to yield the global mass conservation equation given by

X
k

rðkÞp qðkÞ
P


 �
� rðkÞp qðkÞ

P


 �old
dt

X

8><
>: þ DP rðkÞqðkÞ

P uðkÞ � S

 �9>=

>; ¼
X
k

rðkÞ _MM ðkÞ ¼ 0: ð19Þ

In the predictor stage a guessed or an estimated pressure field from the previous iteration, denoted by P o, is

substituted into the momentum equations. The resulting velocity fields denoted by uðkÞ� which now satisfy

the momentum equations will not, in general, satisfy the mass conservation equations. Thus, corrections are

needed in order to yield velocity and pressure fields that satisfy both equations. Denoting the corrections

for pressure, velocity, and density by P 0, uðkÞ
0
, and qðkÞ0 respectively, the corrected fields are written as

P ¼ P�þ P 0; uðkÞ ¼ uðkÞ
� þ uðkÞ

0
; qðkÞ ¼ qðkÞo þ qðkÞ0 ; ð20Þ

where the superscript ‘‘o’’ refers to values from the previous iterations. Hence the equations solved in the

predictor stage are

u
ðkÞ�
P ¼ HP½uðkÞ

� � � rðkÞoDðkÞ
P rPP o: ð21Þ

While the final solutions satisfy

u
ðkÞ
P ¼ HP½uðkÞ� � rðkÞDðkÞ

P rPP : ð22Þ

Subtracting the two equation sets ((22) and (21)) from each other yields the following equation involving

the correction terms:

u
ðkÞ
P ¼ HP½uðkÞ

0 � � rðkÞoDðkÞ
P rPP 0: ð23Þ

Moreover, the new density and velocity fields, qðkÞ and uðkÞ, will satisfy the overall mass conservation

equation if

X
k

rðkÞop qðkÞ
P


 �
� rðkÞp qðkÞ

P


 �old
dt

X

8><
>: þ DP rðkÞoqðkÞuðkÞ � S

� 	
9>=
>; ¼ 0: ð24Þ

Expanding the (qðkÞuðkÞ) term, one gets

qðkÞ�



þ qðkÞ0
�

uðkÞ
�



þ uðkÞ

0
�
¼ qðkÞ�uðkÞ

� þ qðkÞ�uðkÞ
0 þ qðkÞ0uðkÞ

� þ qðkÞ0uðkÞ
0
: ð25Þ
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Substituting Eqs. (25) and (23) into Eq. (24), rearranging, and replacing density correction by pressure

correction, the final form of the pressure correction equation is written as

X
k

X
dt
rðkÞop CðkÞ

q P 0
P

�
þ DP rðkÞoU ðkÞ�CðkÞ

q P 0
h i

� DP rðkÞoqðkÞ� rðkÞ�DðkÞrP 0� �
� S

� 	�

¼ �
X
k

rðkÞop qðkÞ�
P � rðkÞp qðkÞ

P


 �old
dt

X

8><
>: þ DP rðkÞoqðkÞ�U ðkÞ�� 	

9>=
>;: ð26Þ

The corrections are then applied to the velocity, pressure, and density fields using the following equations:

u
ðkÞ�
P ¼ u

ðkÞo
P � rðkÞoDðkÞ

P rPP 0; P � ¼ P�þ P 0; qðkÞ� ¼ qðkÞo þ CðkÞ
q P 0: ð27Þ

Numerical experiments using the above approach to simulate air–water flows have shown poor conser-

vation of the lighter fluid. This problem can be considerably alleviated by normalizing the individual

continuity equations, and hence the global mass conservation equation, by means of a weighting factor

such as a reference density qðkÞ (which is fluid dependent). This approach has been adopted in solving all
problems presented in this work (see [36] for details).

4.2. The MCBA–SIMPLE algorithm

The overall solution procedure is an extension of the single-phase SIMPLE algorithm into multi-phase

flows. Since the pressure correction equation is derived from overall mass conservation, it is denoted by

MCBA–SIMPLE [36]. The sequence of events in the MCBA–SIMPLE is as follows:

1. Solve the phasic momentum equations for velocities.

2. Solve the pressure correction equation based on global mass conservation.

3. Correct velocities, densities, and pressure.

4. Solve the phasic mass conservation equations for volume fractions.

5. Solve the phasic scalar equations (k; e; T ; . . .).
6. Return to the first step and repeat until convergence.
5. Results and discussion

The performance of the above-described solution procedure is assessed in this section by presenting

solutions to four two-dimensional two-phase flow problems spanning the entire subsonic to supersonic

spectrum. The first two problems deal with incompressible turbulent flows while the last two problems are
concerned with compressible flows. Computed results are compared against available experimental data

and/or numerical/theoretical values. In all problems, the first phase represents the continuous phase (de-

noted by a superscript (c)), which must be fluid, and the second phase is the disperse phase (denoted by a

superscript (d)), which may be solid particles or fluid. Unless otherwise specified the third-order SMART

scheme is used in all computations reported in this study.

5.1. Problem 1: Turbulent upward bubbly flow in a pipe

The problem considered involves the prediction of radial phase distribution in turbulent upward air–

water flow in a pipe. Many experimental and numerical studies addressing this problem have appeared in

the literature [52–60]. Most of these studies have indicated that the lateral forces that most strongly affect
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the void distribution are the turbulent stresses and the lateral lift force. As such, in addition to the usual

drag force, the lift force is considered as part of the interfacial force terms in the momentum equations. In

the present work, the interfacial drag forces per unit volume are given by

IxM
� �ðcÞ

D
¼ � IxM

� �ðdÞ
D

¼ 0:375
CD

rp
qðcÞrðdÞrðcÞVslip uðdÞ

�
� uðcÞ

�
; ð28Þ
IyMð ÞðcÞD ¼ � IyMð ÞðdÞD ¼ 0:375
CD

rp
qðcÞrðdÞrðcÞVslip vðdÞ

�
� vðcÞ

�
; ð29Þ

where rp is the bubble radius. The drag coefficient CD varies as a function of the bubble Reynolds and

Weber numbers defined as

Rep ¼ 2
rp
mðcÞl

Vslip We ¼ 4qðcÞ r
2
p

r
Vslip; ð30Þ

where r, the surface tension, is given a value of 0.072 N/m for air–water systems. The following correla-

tions, which take the shape of the bubble into consideration, are utilized [61,62]:

CD ¼ 16
Rep

for Rep < 0:49;

CD ¼ 20
Re0:643p

for 0:49 < Rep < 100;

CD ¼ 6:3
Re0:385p

for Rep � 100;

CD ¼ 8
3

for Rep � 100 and We > 8;

CD ¼ We
3

for Rep � 100 and Rep > 2065:1=We2:6:

8>>>>>>>><
>>>>>>>>:

ð31Þ

Many investigators have considered the modeling of lift forces [61–65]. Based on their work, the following

expressions are employed for the calculation of the interfacial lift forces per unit volume:

IMð ÞðcÞL ¼ � IMð ÞðdÞL ¼ C1q
ðcÞrðdÞ uðdÞ

�
� uðcÞ

�
� r
�

� uðcÞ
�
; ð32Þ

where C1 is the interfacial lift coefficient calculated from

C1 ¼ C1a 1
�

� 2:78 0:2; rðdÞ
� ��

; ð33Þ

where ha; bi denotes the minimum of a and b and C1a is an empirical constant.

Besides the drag and lift interfacial forces, the effect of bubbles on the turbulent field is very important,

as the distribution of bubbles affects the turbulence field in the liquid phase and at the same time the liquid

phase�s turbulence is influenced by the bubbles. In this work, turbulence is assumed to be a property of the

continuous liquid phase (c) and the turbulent kinematics viscosity of the dispersed air phase (d) is assumed
to be a function of that of the continuous phase. The turbulent viscosity of the continuous phase is

computed by solving the following modified transport equations for the turbulent kinetic energy k and its

dissipation rate e that take into account the interaction between the phases:

o rðcÞqðcÞkðcÞ
� �

ot
þr � rðcÞqðcÞuðcÞkðcÞ

� �
¼ r � rðcÞqðcÞ mðcÞl

 "
þ mðcÞt

rðcÞ
k

!
rkðcÞ

#
þ rðcÞqðcÞ GðcÞ�

� eðcÞ
�

þr � qðcÞ mðcÞt

rr

 !
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where GðcÞ is the well-known volumetric production rate of kðcÞ by shear forces, rr the turbulent Schmidt
number for volume fractions, and Pb is the production rate of kðcÞ by drag due to the motion of the bubbles

through the liquid and is given by

Pb ¼
0:375CbCDqðcÞrðdÞrðcÞV 2

slip

rp
: ð36Þ

In Eq. (36) Cb is an empirical constant representing the fraction of turbulence induced by bubbles that goes

into large-scale turbulence of the liquid phase. Moreover, as suggested in [60], the flux representing the
interaction between the fluctuating velocity and volume fraction is modeled via a gradient diffusion ap-

proximation and added as a source term in the continuity ðr � ðqðkÞDðkÞrrðkÞÞÞ and momentum

ðr � ðqðkÞDðkÞuðkÞrrðkÞÞÞ equations with the diffusion coefficient D given by

DðkÞ ¼ mðkÞt

rr

: ð37Þ

The turbulent kinematics eddy viscosity of the dispersed and continuous phases are related through

mðdÞt ¼ mðcÞt

rf

; ð38Þ
where rf is the turbulent Schmidt number for the interaction between the two phases. The above
described turbulence model is a modified version of the one described in [60] in which the turbulent

kinematics viscosities of both phases are allowed to be different in contrast to what is done in [60]. This

is accomplished through the introduction of the rf parameter. As such, different diffusion coefficients

(DðkÞ) are used for the different phases. Results are compared to experimental data from [52,63].

Two experiments were simulated using the above-described treatment and results compared to ex-

perimental data. The two experiments differ in the Reynolds number, the bubbles diameter and the inlet

conditions. In the experiment of Seriwaza et al. [52] the Reynolds number based on superficial liquid

velocity and pipe diameter is 8� 104, the inlet superficial gas and liquid velocities are 0.077 and 1.36 m/
s, respectively, and the inlet void fraction is 5.36� 10�2 with no slip between the incoming phases.

Moreover, the bubble diameter is taken as 3 mm [60], while the fluid properties are taken as qðcÞ ¼ 1000

kg/m3, qðdÞ ¼ 1:23 kg/m3, and mðcÞl ¼ 10�6 m2/s. In the experiment of Lahey et al. [63] the Reynolds

number is based on superficial liquid velocity and pipe diameter of 5� 104, the inlet superficial gas and

liquid velocities are 0.1 and 1.08 m/s, respectively. Both problems are solved using the same values for

all constants in the model with C1a ¼ 0:075, rf ¼ 0:5, rr ¼ 0:7, and Cb ¼ 0:05. Predicted radial profiles

of the vertical liquid velocity and void fraction presented in Figs. 2(a) and (b) using a grid of size

96� 32 control volumes concur very well with measurements and compare favorably with numerical
profiles reported by Boisson and Malin [60] (Fig. 2(a)) and PHOENICS [65] (Fig. 2(b)). As shown, the

void fraction profile indicates that gas is taken away from the pipe center. This is caused by the lift

force, which drives the bubbles towards the wall.



Fig. 2. Comparison of fully developed liquid velocity and void fraction profiles for turbulent bubbly upward bubbly flow in a pipe: (a)

Seriwaza et al. data; (b) Lahey et al. data.
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5.2. Problem 2: Turbulent air–particle flow in a vertical pipe

In problem 2, the upward flow of a dilute gas–solid mixture in a vertical pipe is simulated. As in the

previous problem, the axi-symmetric form of the gas and particulate transport equations are employed. The

effects of interfacial virtual mass and lift forces are small and may be neglected, as reported in several

studies [66–68], and the controlling interfacial force is drag (see [69]). Denoting the continuous and dis-

persed phases by superscripts (c) and (d), respectively, the drag in the x- and y-momentum equations are
given by
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IxM
� �ðcÞ

D
¼ � IxM

� �ðdÞ
D

¼ 3

8

CD

rp
qðcÞrðdÞVslip uðdÞ

�
� uðcÞ

�
; ð39Þ
IyMð ÞðcÞD ¼ � IyMð ÞðdÞD ¼ 3

8

CD

rP
qðcÞrðdÞVslip vðdÞ

�
� vðcÞ

�
; ð40Þ

where rP represents the particle�s radius, CD the drag coefficient computed from

CD ¼ 24
Rep

for Rep < 1;

CD ¼ 24
Rep

1þ 0:15Re0:687p


 �
for 1 < Rep < 1000;

CD ¼ 0:44 for Rep > 1000;

8><
>: ð41Þ

and Rep the Reynolds number based on the particle size as defined in Eq. (30).
As before, turbulence is assumed to be a property of the continuous gas phase (c) and the turbulent

kinematics viscosity of the dispersed particle phase (d) is assumed to be a function of that of the continuous

phase. Again, turbulence modulation due to the presence of particles is predicted using a two-phase k–e
model. Several extensions of the k–e model for carrier-phase turbulence modulation have been proposed in

the literature [46–51] and the modification of Chen and Wood [48], which introduces additional source

terms into the turbulence transport equations, is adopted here. These source terms are always negative and

act to reduce k and e. However, depending on the relative extent of reductions in k and e, the turbulent

viscosity may be either reduced or increased by the presence of particles. Thus, the turbulent viscosity is
computed by solving the turbulence transport equations (Eqs. (5) and (6)) for the continuous phase with I ðcÞk

and I ðcÞe evaluated using the following relations suggested by Chen and Wood [48]:

I ðcÞk ¼ �2qðdÞrðcÞrðdÞ
kðcÞ

sp
1
�

� e�0:0825ðsp=seÞ
�
; ð42Þ
I ðcÞe ¼ �2qðdÞrðcÞrðdÞ
eðcÞ

sp
; ð43Þ

where sp and se are timescales characterizing the particle response and large-scale turbulent motion, re-

spectively, and are computed from

sp ¼
qðdÞrðdÞ

FD
Vslip; se ¼ 0:165

kðcÞ

eðcÞ
; ð44Þ

where FD is the magnitude of the inter-phase drag force per unit volume. The turbulent kinematics eddy
viscosity of the dispersed phase is found using Eq. (38).

The model is validated against the experimental results of Tsuji et al. [66]. In their experiments, the

vertical pipe has an internal diameter of 30.5 mm. Results are replicated here for the case of an air Reynolds

number, based on the pipe diameter, of 3.3� 104 and a mean air inlet velocity of 15.6 m/s using particles of

diameter 200 lm and density 1020 kg/m3. In the computations, the mass-loading ratio at inlet is considered

to be 1 with no slip between the phases, and rf and rr are set to 5 and 1010 (i.e., the interaction terms

included for bubbly flows are neglected here), respectively. Fig. 3 shows the fully developed gas and par-

ticles mean axial velocity profiles generated using a grid of size 96� 40 CV. It is evident that there is
generally a very good agreement between the predicted and experimental data with the gas velocity being

slightly over predicted and the particles velocity slightly under predicted. Moreover, close to the wall, the

model predictions indicate that the particles have higher velocities than the gas, which is in accord with the

experimental results of Tsuji et al. [66].



Fig. 3. Comparison of fully developed gas and particle velocity profiles for turbulent air–particle flow in a pipe.
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5.3. Problem 3: Compressible dilute air–particle subsonic flow over a flat plate

This is a well-studied problem [66–76] suitable as a benchmark test. It is known that two-phase flow

greatly changes the main features of the boundary layer over a flat plate. Typically, three regions are de-

fined in the two-phase boundary layer (Fig. 4), based on the importance of the slip velocity between the two

phases: a large-slip region close to the leading edge, a moderate-slip region further down, and a small-slip

one far downstream. The characteristic scale in this two-phase problem is the relaxation length ke [73],

defined as

ke ¼
2

9

qðdÞr2pu1
lðcÞ ; ð45Þ

where qðdÞ and rp are, respectively, the density and radius of the particles, lðcÞ the viscosity of the fluid, and

u1 the free stream velocity. The three regions are defined according to the order of magnitude of the slip

parameter x� ¼ x=ke. In the simulation, the viscosity of the fluid is considered to be a function of tem-
perature and varies according to [73]

lðcÞ ¼ lref

T ðcÞ

Tref


 �0:6

; ð46Þ

where the reference viscosity and temperature are lref ¼ 1.86� 10�5 N s/m2 and Tref ¼ 303 K, respectively.
Even though variations in gas density are small under the conditions considered, these variations are not

neglected and the flow is treated as compressible for the continuous phase and as incompressible for the

dispersed phase. Moreover, drag is the only interfacial force retained due to its dominance over other

interfacial forces. Denoting the continuous and dispersed phases by superscripts (c) and (d), respectively,

this force is computed as [73]



Fig. 4. The three different regions within the boundary layer of dusty flow over a flat plate.
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where the drag coefficient is given by

CD ¼ 1

50
Rep þ

7

6
Re0:15p : ð49Þ

In the energy equation, heat transfer due to radiation is neglected and only convective heat transfer around

an isolated particle is considered. Moreover, the particles have no individual random motion, mutual
collisions, and other interactions among them. Therefore, only the process of drag and heat transfer couple

the particles with the gas. Under such conditions, the interfacial terms in the gas (continuous phase) and

particles (dispersed phase) energy equations reduce to [73]

I ðcÞE ¼ Qg�p þ Fg�p:u
ðdÞ; ð50Þ
I ðdÞE ¼ �Qg�p; ð51Þ

where

Fg–p ¼ IxM
� �ðcÞ

D
iþ IyMð ÞðcÞD j; ð52Þ
Nu ¼ 2:0þ 0:6Re1=2p PrðcÞ
� �1=3

; ð53Þ
Qg–p ¼
3

2

rðdÞkðcÞNu
r2p

T ðdÞ�
� T ðcÞ�: ð54Þ

In the above equations, Nu is the Nusselt number, PrðcÞ the gas Prandtl number, kðcÞ the gas thermal

conductivity, T the temperature, and other parameters are as defined earlier.
In the simulation, the particle diameter is chosen to be 10 lm, the particle Reynolds number is assumed

to be equal to 10, the material density is 1766 kg/m3, and the Prandtl number is set to 0.75. The south

boundary (wall) is treated as a no-slip wall boundary for the gas phase (i.e., both components of the gas

velocity are set to zero), while the particle phase encounters slip wall conditions (i.e., the normal fluxes are

set to zero). The gas and the particles enter the computational domain under thermal and dynamical

equilibrium conditions. A mass load ratio of 1 between the particles phase and the gas phase is used.

Results are displayed using the following dimensionless variables in order to bring all quantities to the same

order of magnitudes
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x� ¼ x
ke

; y� ¼ y
ke

ffiffiffiffiffiffi
Re

p
; u� ¼ u

u1
; v� ¼ v

u1

ffiffiffiffiffiffi
Re

p
; Re ¼ quke

l
: ð55Þ

Fig. 5 shows the results for the steady flow obtained on a rectangular domain with a mesh of density

104� 48 CV. stretched in the y-direction. The figure provides the development of gas and particles velocity

profiles within the three regions mentioned earlier. In the near leading edge area (x� ¼ 0:1), the gas velocity
is adjusted at the wall to obtain the no-slip condition as for the case of a pure gas boundary layer. The

particles have no time to adjust to the local gas motion and there is a large velocity slip between the phases.

In the transition region (x� ¼ 1), significant changes in the flow properties take place. The interaction
between the phases causes the particles to slow down and the gas to accelerate as apparent in the plots. In

the far downstream region (x� ¼ 5), the particles have enough time to adjust to the state of the gas motion.

The slip is very small and the solution tends to equilibrium. These results are in excellent agreement with the

numerical solutions reported by Thevand et al. [76] plotted in Fig. 5, validating the proposed methodology.

5.4. Problem 4: Inviscid transonic dusty flow in a converging–diverging nozzle

As a final test for the newly suggested numerical procedure, dilute two-phase transonic flow in an axi-

symmetric converging-diverging rocket nozzle is considered. Several researchers have analyzed the problem

and data is available for comparison [77–86]. In most of the reported studies, a shorter diverging section, in

comparison with the one considered here, has been used when predicting the two-phase flow. Two-phase

results for the long configuration have only been reported by Chang et al. [81]. The flow is assumed to be
inviscid and the single-phase results are used as an initial guess for solving the two-phase problem. The

physical configuration (Fig. 6) is the one described in [81]. The viscosity of the fluid, which is solely used in

the calculation of the interfacial drag force, varies with the temperature according to Sutherland�s law for

air
Fig. 5. Comparison of fully developed gas and particle velocity profiles inside the boundary layer at different axial locations for dilute

two-phase flow over a flat plate.



Fig. 6. Physical domain for the dusty gas flow in a converging–diverging nozzle.
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lðcÞ ¼ 1:458� 10�6 T ðcÞ
ffiffiffiffiffiffiffiffi
T ðcÞ
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T ðcÞ þ 110:4
: ð56Þ

The coupling between gas and particle phases is through the interfacial momentum and energy terms. The

force exerted on a single particle moving through a gas is given as [82]

fx ¼ 6prpfDlðcÞ uðdÞ
�

� uðcÞ
�
; ð57Þ
fy ¼ 6prpfDlðcÞ vðdÞ
�

� vðcÞ
�
; ð58Þ

so that for N particles in a unit volume the effective drag force is

IxM
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D

¼ 9

2
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; ð59Þ
IyMð ÞðcÞD ¼ � IyMð ÞðdÞD ¼ 9

2

rðdÞ

r2p
fDlðcÞ vðdÞ

�
� vðcÞ

�
; ð60Þ

where fD is the ratio of the drag coefficient CD to the stokes drag CD0 ¼ 24/Rep and is given by [81]

fD ¼ 1þ 0:15Re0:687p þ 0:0175Rep
1þ 4:25� 104Re�1:16

p

; Rep < 3� 105: ð61Þ

The heat transferred from gas to particle phase per unit volume is given as [82]

Qg–p ¼
3

2

rðdÞ

rp
kðcÞNu T ðdÞ�

� T ðcÞ�; ð62Þ

where kðcÞ is the thermal conductivity of the gas and Nu, the Nusselt number, is written as [82]

Nu ¼ 2þ 0:459Re0:55p Pr0:33c : ð63Þ



Fig. 7. (a,b) Volume fraction contours and (c,d) particle velocity vectors for dusty gas flow in a converging–diverging nozzle.
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The gas–particle inter-phase energy term is given by
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� T ðdÞ�; ð65Þ

where the first two terms on the right-hand side of Eq. (64) represent the energy exchange due to mo-

mentum transfer.



Fig. 8. Comparison of one-phase and two-phase gas Mach number distributions along the (a) wall and (b) centerline of the dusty flow

in a converging–diverging nozzle problem.
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The physical quantities employed are similar to those used in [81]. The gas stagnation temperature and

pressure at inlet to the nozzle are 555 K and 10.34� 105 N/m2, respectively. The specific heat for the gas and

particles are 1.07� 103 J/kg K and 1.38� 103 J/kg K, respectively, and the particle density is 4004.62 kg/m3.
With a zero inflow velocity angle, the fluid is accelerated from subsonic to supersonic speed in the nozzle.

The inlet velocity and temperature of the particles are presumed to be the same as those of the gas phase.

Results for two particle sizes of radii 1 and 10 lm with the same mass fraction / ¼ 0:3 are presented using a
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grid of size 188� 80 CV. Figs. 7(a) and (b) show the particle volume fraction contours while Figs. 7(c) and

(d) display the velocity distribution. For the flow with particles of radius 1 lm, a sharp change in particle

density is obtained near the upper wall downstream of the throat, and the particle density decreases to a

small value. With the large particle flow (10 lm), however, a much larger particle-free zone appears due to

the inability of the heavier particles to turn around the throat corner. These findings are in excellent

agreement with published results reported in [81] and others using different methodologies. In addition the

contour lines are similar to those reported by Chang et al. [81]. A quantitative comparison of current

predictions with published experimental and numerical data is presented in Fig. 8 through gas Mach
number distributions along the wall (Fig. 8(a)) and centerline (Fig. 8(b)) of the nozzle for the one-phase and

two-phase flow situations with particles of radii 10 lm. As can be seen, the one-phase predictions fall on top

of experimental data reported in [84–86]. Along the centerline of the nozzle, current predictions are of

quality better than those obtained by Chang et al. [81]. Since the nozzle contour has a rapid contraction

followed by a throat with a small radius of curvature, the flow near the throat wall is overturned and

inclined to the downstream wall. A weak shock is thus formed to turn the flow parallel to the wall. This

results in a sudden drop in the Mach number value and as depicted in Fig. 8(b), this sudden drop is

correctly envisaged by the solution algorithm with the value after the shock being slightly over predicted.
Due to the unavailability of two-phase flow data, predictions are compared against the numerical results

reported in [81]. As displayed in Figs. 8(a) and (b), both solutions are in good agreement with each other

indicating once more the correctness of the calculation procedures. The lower gas Mach number in the two-

phase flow is caused by the heavier particles (qðdÞ � qðcÞ), which reduce the gas velocity. Moreover, owing to

the particle-free zone, the Mach number difference between the one- and two-phase flows along the wall is

smaller than that at the centerline.
6. Closing remarks

A new finite volume-based numerical procedure for the calculation of multi-phase flows at all speeds was

presented. The virtues of the method were demonstrated by solving four two-phase flow problems spanning

the entire subsonic to supersonic spectrum over a wide range of physical conditions: turbulent bubbly flow

in a pipe, turbulent air–particle flow in a pipe, subsonic compressible air–particle flow over a flat plate, and

transonic dusty flow in a converging diverging nozzle. Results generated were compared against experi-

mental and/or numerical simulation data where available. The accuracy of the predicted quantities, which
was shown to be similar or better than that obtained with special purpose methods, was a clear demon-

stration of the effectiveness of the new method as a tool for modeling multi-phase flows at all speeds.
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